Artificial Reef or Fish Aggregation Device?

Artificial reefs have significant potential to boost fish populations, even surpassing pre-fished levels or what is possible in marine reserves. However they have a checkered history overseas, with many reefs:

  • Failing to restore native biodiversity to levels of those of conserved natural reefs (Bracho-Villavicencio et al. 2023).
  • Creating hard surfaces which are favoured by invasive species (these species often travel to new areas on hard structures) (Gauff  et al. 2023).
  • Created as a convenient way to dispose of something which pollutes the marine environment (E.g. UnderwaterTimes.com 2006). They can also attract polluting activities (Zhang et al. 2019).

When considering building an artificial reef, it is crucial to determine whether it will provide additional habitat to support reef communities or merely function as a Fish Aggregation Device (FAD). Like artificial reefs, FADs are man-made structures which are attract fish to a specific area by providing habitat and shelter for marine life. The problem with FADs is that they decrease local fish populations by concentrating them in one area where they are easily targeted by fishers (Cabral et al. 2014) as illustrated below.

To define the size of the habitat required to avoid FAD functionality, you could base it on the home range of each fish species you want to increase. For example:

The most studied fish in the Hauraki Gulf is the tāmure / snapper, which show high site fidelity to reef habitats. Tāmure in deep soft sediment habitats are quite mobile, with a median distance of 19 km, and some movements up to 400 km. In contrast tāmure in shallow rocky reef habitats have restricted movements, with a median distance of 0.7 km (Parsons et al. 2011). You can see this in small marine reserves with shallow rock reefs, such as the 5 km² Cape Rodney – Okakari Point Marine Reserve (Goat Island), which effectively increase the size and abundance of this species. Additionally, tāmure around mussel farms have been found to be healthier than those in surrounding soft sediment habitats (Underwood 2023). The studied mussel farms were near rocky reefs and covered about eight hectares (200 x 400m).

This means fished artificial reefs should be deployed at hectare scales to avoid acting as population sinks. For tāmure, an area about the size of eight rugby fields is a considerable undertaking, but to avoid your reef functioning as a FAD for fishing, it is essential to spread your structure over a large area. If this sounds more like ‘habitat enhancement’ than an artificial reef, then perhaps that is a better way to frame your design. Of course, this consideration is unnecessary if your artificial reef is not fished.

REFERNCES

Bracho-Villavicencio et al., 2023 https://doi.org/10.3390/environments10070121 A Review of the State of the Art and a Meta-Analysis of Its Effectiveness for the Restoration of Marine Ecosystems. Environments.

Cabral et al., 2014 https://academic.oup.com/icesjms/article/71/7/1750/664488 Modelling the impacts of fish aggregating devices (FADs) and fish enhancing devices (FEDs) and their implications for managing small-scale fishery

Gauff  et al., 2023 https://doi.org/10.1016/j.jembe.2023.151882
Unexpected biotic homogenization masks the effect of a pollution gradient on local variability of community structure in a marine urban environment.

Parsons et al., 2003 https://www.researchgate.net/publication/225304000_Snapper_Pagrus_auratus_Sparidae_home_range_dynamics_Acoustic_tagging_studies_in_a_marine_reserve Snapper Pagrus auratus (Sparidae) home range dynamics: Acoustic tagging studies in a marine reserve

UnderwaterTimes.com 2006
https://web.archive.org/web/20170912095117/https://www.underwatertimes.com/news.php?article_id=36210951740 Two Million Tire Artificial Reef to be Removed Off Florida Coast; Smothering Corals

Underwood et al., 2023 https://www.aquaculturescience.org/content/dam/tnc/nature/en/documents/aquaculture/AquacultureHabitatComparativeReport.pdf  Habitat value of green-lipped mussel farms for fish in northern Aotearoa New Zealand

Zhang et al., 2019 https://doi.org/10.1016/j.scitotenv.2019.134768
Microplastic pollution in water, sediment, and fish from artificial reefs around the Ma’an Archipelago, Shengsi, China.